Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
1.
Appl Environ Microbiol ; 90(3): e0224523, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38319098

RESUMO

Bacterial-fungal interactions are pervasive in the rhizosphere. While an increasing number of endohyphal bacteria have been identified, little is known about their ecology and impact on the associated fungal hosts and the surrounding environment. In this study, we characterized the genome of an Enterobacter sp. Crenshaw (En-Cren), which was isolated from the generalist fungal pathogen Rhizoctonia solani, and examined the genetic potential of the bacterium with regard to the phenotypic traits associated with the fungus. Overall, the En-Cren genome size was typical for members of the genus and was capable of free-living growth. The genome was 4.6 MB in size, and no plasmids were detected. Several prophage regions and genomic islands were identified that harbor unique genes in comparison with phylogenetically closely related Enterobacter spp. Type VI secretion system and cyanate assimilation genes were identified from the bacterium, while some common heavy metal resistance genes were absent. En-Cren contains the key genes for indole-3-acetic acid (IAA) and phenylacetic acid (PAA) biosynthesis, and produces IAA and PAA in vitro, which may impact the ecology or pathogenicity of the fungal pathogen in vivo. En-Cren was observed to move along hyphae of R. solani and on other basidiomycetes and ascomycetes in culture. The bacterial flagellum is essential for hyphal movement, while other pathways and genes may also be involved.IMPORTANCEThe genome characterization and comparative genomics analysis of Enterobacter sp. Crenshaw provided the foundation and resources for a better understanding of the ecology and evolution of this endohyphal bacteria in the rhizosphere. The ability to produce indole-3-acetic acid and phenylacetic acid may provide new angles to study the impact of phytohormones during the plant-pathogen interactions. The hitchhiking behavior of the bacterium on a diverse group of fungi, while inhibiting the growth of some others, revealed new areas of bacterial-fungal signaling and interaction, which have yet to be explored.


Assuntos
Enterobacter , Hifas , Enterobacter/genética , Enterobacter/metabolismo , Hifas/metabolismo , Fenilacetatos/metabolismo , Rhizoctonia/genética
2.
Biotechnol J ; 19(2): e2300412, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38375560

RESUMO

A highly sensitive quantitative PCR (qPCR) method was developed for detection and quantification of Bacillus velezensis HMB26553 in cotton rhizosphere. The study aimed to develop a quantitative detection method for the strain HMB26553, and explore the relationship between its colonization of the cotton rhizosphere and its control effect. The whole genome sequence of strain HMB26553 was obtained by genome sequencing and a unique specific sequence pB-gene0026 on plasmid plaBV2 was identified by using high-throughput alignment against NCBI. Plasmid plaBV2 could be stably genetically inherited. Based on this sequence, specific primers for amplifying 106 bp and a minor groove binder (MGB) TaqMan probe for enhancing sensitivity were designed. The copy number of plaBV2 in strain HMB26553, which was 2, was confirmed by internal reference primers and the MGB TaqMan probe based on housekeeping gene gyrB. The established detection technique based on these primers and probes had high specificity and sensitivity compared to traditional plate counting method, with a detection limit of 1.5 copy genome. Using this method, the study discovered a likely correlation between the quantity of colonization in cotton rhizosphere and efficacy against cotton damping-off caused by Rhizoctonia after seed soaking and irrigation with strain HMB26553. Thus, this method provides scientific support for the rational application of strain HMB26553 in the future.


Assuntos
Bacillus , Rhizoctonia , Rhizoctonia/genética , Bacillus/genética , Sequência de Bases
3.
Arch Virol ; 169(1): 15, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38163823

RESUMO

Rhizoctonia solani endornavirus 8 (RsEV8) was isolated from strain XY175 of Rhizoctonia solani AG-1 IA. The full-length genome of RsEV8 is 16,147 nucleotides (nt) in length and contains a single open reading frame that encodes a large polyprotein of 5227 amino acids. The polyprotein contains four conserved domains: viral methyltransferase, putative DEAH box helicase, viral helicase, and RNA-dependent RNA polymerase (RdRp). RsEV8 has a shorter 3'-UTR (58 nt) and a longer 5'-UTR (404 nt). A multiple sequence alignment indicated that the RdRp of RsEV8 possesses eight typical RdRp motifs. According to a BLASTp analysis, RsEV8 shares 39.31% sequence identity with Rhizoctonia cerealis endornavirus-1084-7. Phylogenetic analysis demonstrated that RsEV8 clusters with members of the genus Betaendornavirus.


Assuntos
Micovírus , Vírus de RNA , Filogenia , Genoma Viral , Rhizoctonia/genética , RNA Polimerase Dependente de RNA/genética , Poliproteínas/genética , Fases de Leitura Aberta , RNA Viral/genética
4.
Mol Plant Pathol ; 25(1): e13397, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37902589

RESUMO

Rhizoctonia solani AG-1 IA causes a necrotrophic rice disease and is a serious threat to rice production. To date, only a few effectors have been characterized in AG-1 IA. We previously identified RsIA_CtaG/Cox11 and showed that infiltration of the recombinant protein into rice leaves caused disease-like symptoms. In the present study, we further characterized the functionality of RsIA_CtaG/Cox11. RsIA_CtaG/Cox11 is an alternative transcript of cytochrome c oxidase copper chaperone Cox11 that starts from the second AUG codon, but contains a functional secretion signal peptide. RNA interference with RsIA_CtaG/Cox11 reduced the pathogenicity of AG-1 IA towards rice and Nicotiana benthamiana without affecting its fitness or mycelial morphology. Transient expression of the RsIA_CtaG/Cox11-GFP fusion protein demonstrated the localization of RsIA_CtaG/Cox11 to mitochondria. Agro-infiltration of RsIA_CtaG/Cox11 into N. benthamiana leaves inhibited cell death by BAX and INF1. In contrast to rice, agro-infiltration of RsIA_CtaG/Cox11 did not induce cell death in N. benthamiana. However, cell death was observed when it was coinfiltrated with Os_CoxVIIa, which encodes a subunit of cytochrome c oxidase. Os_CoxVIIa appeared to interact with RsIA_CtaG/Cox11. The cell death triggered by coexpression of RsIA_CtaG/Cox11 and Os_CoxVIIa is independent of the leucine-rich repeat receptor kinases BAK1/SOBIR1 and enhanced the susceptibility of N. benthamiana to AG-1 IA. Two of the three evolutionarily conserved cysteine residues at positions 25 and 126 of RsIA_CtaG/Cox11 were essential for its immunosuppressive activity, but not for cell death induction. This report suggests that RsIA_CtaG/Cox11 appears to have a dual role in immunosuppression and cell death induction during pathogenesis.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Oryza , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Oryza/genética , Oryza/metabolismo , Mitocôndrias/metabolismo , Rhizoctonia/genética , Rhizoctonia/metabolismo , Imunidade Vegetal/genética , Morte Celular , Doenças das Plantas/genética
5.
Sci Rep ; 13(1): 17328, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833315

RESUMO

The genus Rhizoctonia has been classified into two main groups according to the number of nuclei. Binucleate Rhizoctonia strains have two nuclei in each cell, whereas multinucleate Rhizoctonia fungi were observed to have a variable number of nuclei ranging from 4 to 16 in each cell. In the study, twelve Polish isolates were tested. According to ITS1-5,8S-ITS2 rDNA sequences, the isolates were classified in the AG-E. Their affiliation to AG was confirmed by anastomosis reactions with tester isolates. The number of nuclei was counted with DAPI staining under a fluorescent microscope, and the diameter of the hyphae was also measured. Not all AG-E isolates had the same number of nuclei in their cells: one group among these fungi produced cells with a diverse number of nuclei, usually 3; however, this number ranged from 2 to 4, making the average number of nuclei close to 3. It can be assumed that all isolates with three nuclei belong to this group, which may greatly facilitate the preliminary identification of trinucleate isolates of Rhizoctonia spp. belonging to AG-E. Based on these characters, we call these isolates AG-E-3n isolates. The thiamine requirement is not helpful in classifying and describing the AG-E strains.


Assuntos
Hifas , Rhizoctonia , Rhizoctonia/genética , Filogenia , DNA Ribossômico , Núcleo Celular/genética
6.
Cells ; 12(9)2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37174701

RESUMO

Bacillus spp. is one kind of the important representative biocontrol agents against plant diseases and promoting plant growth. In this study, the whole genomic sequence of bacterial strain HMB26553 was obtained. A phylogenetic tree based on the genome and ANI (average nucleotide identity), as well as dDDH (digital DNA-DNA hybridization), was constructed, and strain HMB26553 was identified as Bacillus velezensis. Fourteen biosynthetic gene clusters responsible for secondary metabolite were predicted via anti-SMASH, and six secondary metabolites were identified by UHPLC-QTOF-MS/MS (ultra-high-performance liquid chromatography coupled to quadrupole-time-of-flight tandem mass spectrometry). When the phytopathogen Rhizoctonia solani was treated with B. velezensis HMB26553, the mycelial structure changed, ROS (reactive oxygen species) accumulated, and the mitochondrial membrane potential decreased. Characteristics of strain HMB26553 were predicted and confirmed by genomic information and experiments, such as producing IAA, siderophore, extracellular enzymes and biofilm, as well as moving and promoting cotton growth. All these results suggested the mechanisms by which B. velezensis HMB26553 inhibits pathogen growth and promotes cotton growth, which likely provided the potential biocontrol agent to control cotton Rhizoctonia damping-off.


Assuntos
Bacillus , Rhizoctonia , Rhizoctonia/genética , Filogenia , Espectrometria de Massas em Tandem , Genoma Bacteriano , Bacillus/genética , Bacillus/metabolismo , DNA/metabolismo
7.
Plant Cell ; 35(8): 2773-2798, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37119263

RESUMO

Rhizoctonia solani is a devastating soil-borne pathogen that seriously threatens the cultivation of economically important crops. Multiple strains with a very broad host range have been identified, but only 1 (AG1-IA, which causes rice sheath blight disease) has been examined in detail. Here, we analyzed AG4-HGI 3 originally isolated from Tartary buckwheat (Fagopyrum tataricum), but with a host range comparable to AG1-IA. Genome comparison reveals abundant pathogenicity genes in this strain. We used multiomic approaches to improve the efficiency of screening for disease resistance genes. Transcriptomes of the plant-fungi interaction identified differentially expressed genes associated with virulence in Rhizoctonia and resistance in Tartary buckwheat. Integration with jasmonate-mediated transcriptome and metabolome changes revealed a negative regulator of jasmonate signaling, cytochrome P450 (FtCYP94C1), as increasing disease resistance probably via accumulation of resistance-related flavonoids. The integration of resistance data for 320 Tartary buckwheat accessions identified a gene homolog to aspartic proteinase (FtASP), with peak expression following R. solani inoculation. FtASP exhibits no proteinase activity but functions as an antibacterial peptide that slows fungal growth. This work reveals a potential mechanism behind pathogen virulence and host resistance, which should accelerate the molecular breeding of resistant varieties in economically essential crops.


Assuntos
Fagopyrum , Fagopyrum/genética , Perfilação da Expressão Gênica , Virulência/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rhizoctonia/genética , Rhizoctonia/metabolismo , Resistência à Doença/genética , Multiômica
8.
Mol Biol Rep ; 50(5): 4225-4237, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36894770

RESUMO

BACKGROUND: Rhizoctonia solani (AG1 IA) is an important pathogen of rice (Oryza sativa L.) that causes rice sheath blight (RSB). Since control of RSB by breeding and fungicides have had limited success, novel strategies like biocontrol with plant growth-promoting rhizobacteria (PGPR) can be an effective alternative. METHOD AND RESULTS: Seven commonly used reference genes (RGs), 18SrRNA, ACT1, GAPDH2, UBC5, RPS27, eIF4a and CYP28, were evaluated for their stability in rice-R. solani-PGPR interaction for real-time quantitative PCR (RT-qPCR) analysis. Different algorithms were examined, Delta Ct, geNorm, NormFinder, BestKeeper, and comprehensive ranking by RefFinder, to evaluate RT-qPCR of rice in tissues infected with R. solani and treated with the PGPR strains, Pseudomonas saponiphilia and Pseudomonas protegens, with potassium silicate (KSi) alone or in combination with each PGPR strain. RG stability was affected for each treatment and treatment-specific RG selection was suggested. Validation analysis was done for nonexpressor of PR-1(NPR1) for each treatment. CONCLUSION: Overall, ACT1 was the most stable RG with R. solani infection alone, GAPDH2 with R. solani infection plus KSi, UBC5 with R. solani infection plus P. saponiphilia, and eIF4a with R. solani infection plus P. protegens. Both ACT1 and RPS27 were the most stable with the combination of KSi and P. saponiphilia, while RPS27 was the most stable with the combination of KSi and P. protegens.


Assuntos
Oryza , Oryza/genética , Oryza/microbiologia , Melhoramento Vegetal , Rhizoctonia/genética , Desenvolvimento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
9.
BMC Biol ; 21(1): 15, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36721195

RESUMO

BACKGROUND: Rhizoctonia solani is a polyphagous fungal pathogen that causes diseases in crops. The fungal strains are classified into anastomosis groups (AGs); however, genomic complexity, diversification into the AGs and the evolution of pathogenicity-associated genes remain poorly understood. RESULTS: We report a recent whole-genome duplication and sequential segmental duplications in AG1-IA strains of R. solani. Transposable element (TE) clusters have caused loss of synteny in the duplicated blocks and introduced differential structural alterations in the functional domains of several pathogenicity-associated paralogous gene pairs. We demonstrate that the TE-mediated structural variations in a glycosyl hydrolase domain and a GMC oxidoreductase domain in two paralogous pairs affect the pathogenicity of R. solani. Furthermore, to investigate the association of TEs with the natural selection and evolution of pathogenicity, we sequenced the genomes of forty-two rice field isolates of R. solani AG1-IA. The genomic regions with high population mutation rates and with the lowest nucleotide diversity are enriched with TEs. Genetic diversity analysis predicted the genes that are most likely under diversifying and purifying selections. We present evidence that a smaller variant of a glucosamine phosphate N-acetyltransferase (GNAT) protein, predicted to be under purifying selection, and an LPMP_AA9 domain-containing protein, predicted to be under diversifying selection, are important for the successful pathogenesis of R. solani in rice as well as tomato. CONCLUSIONS: Our study has unravelled whole-genome duplication, TE-mediated neofunctionalization of genes and evolution of pathogenicity traits in R. solani AG1-IA. The pathogenicity-associated genes identified during the study can serve as novel targets for disease control.


Assuntos
Duplicação Gênica , Oryza , Virulência/genética , Rhizoctonia/genética , Genômica , Elementos de DNA Transponíveis
10.
Lett Appl Microbiol ; 76(1)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36688753

RESUMO

In genome analyses of Rhizoctonia solani AG1-IA causing sheath blight (ShB) of rice, many genes were identified to have a hypothetical role in pathogenesis. To understand their roles in pathogenesis, their expressions during fungal infection were studied. An aggressive R. solani strain, RIRS-K, was first identified among six isolates, RIRS-K, RIRS-17, RIRS-S, RIRS-T, RIRS-MU and RIRS-FD, for inducing a maximum relative lesion height (RLH) of 32.7% on a ShB susceptible cultivar, Pusa Basmati-1. Hypothetical pathogenicity genes (52 nos) identified by in silico analyses of the publicly available genomic database of the pathogen strain were evaluated in Pathogen-Host Interaction (PHI) blast and RIRS-K. Though PHI blast identified 26 genes as potential ones, only 8 were constitutively expressive in RIRS-K cultured in a minimal broth. Among them, only expressions of AG1IA_06195, AG02692, AG04508, and AG05730 were induced in the rice plant inoculated with RIRS-K and, hence, were identified as the candidate ones. The candidate genes were highly expressed in the aggressive strain (RIRS-K) in comparison to the less aggressive one (RIRS-17). In further testing of their expressions in the highly aggressive fungal strain, RIRS-K infecting PB-1 pre-colonized by a potent biocontrol consortium comprising of Bacillus subtilis (S17TH), Pseudomonas putida (TEPF-Sungal-1), and Trichoderma harzianum (S17TH), the disease scoring and gene expression studies indicated that the candidate genes were downregulated. The studies, therefore, speculated that these genes might play a role in pathogen aggressiveness and ShB development.


Assuntos
Oryza , Oryza/microbiologia , Doenças das Plantas/microbiologia , Genoma Fúngico , Rhizoctonia/genética
11.
Arch Virol ; 168(2): 75, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707487

RESUMO

Here, we describe a novel mycovirus, tentatively designated as "Rhizoctonia solani fusarivirus 6" (RsFV6), which was discovered in Rhizoctonia solani AG-3 PT strain 3P-2-2. The virus has a single-stranded positive-sense RNA (+ssRNA) genome of 6141 nucleotides containing two open reading frames (ORFs) and a poly(A) tail. ORF1 encodes a large polypeptide of 1,862 amino acids (aa) with conserved RNA-dependent RNA polymerase (RdRp) and helicase (Hel) domains. ORF2 encodes a putative 167-aa protein of unknown function. BLASTp searches revealed that the ORF1-encoded polypeptide showed the highest sequence similarity (70.67% identity) to that of Rhizoctonia solani fusarivirus 3 (RsFV3), which was isolated from Rhizoctonia solani AG-2-2LP. Multiple sequence alignments and phylogenetic analysis based on RdRp and Hel sequences indicated that RsFV6 could be a novel member of the genus Alphafusarivirus family Fusariviridae.


Assuntos
Micovírus , Vírus de RNA , RNA Viral/genética , Filogenia , Genoma Viral , Rhizoctonia/genética , RNA Polimerase Dependente de RNA/genética , Micovírus/genética , Fases de Leitura Aberta
12.
Microbiol Res ; 266: 127219, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36279646

RESUMO

The necrotrophic phytopathogen Rhizoctonia solani (R. solani) causes disease in many plant species. This fungal genome encodes abundant small cysteine-rich (SCR)-secreted proteins in R. solani that may induce pathogenesis. To test their molecular functions, we introduced 10 SCR-secreted protein genes from R. solani into tobacco leaves via agroinfiltration. Consequently, we identified RsMf8HN, a novel SCR protein that triggers cell death and an oxidative burst in tobacco. RsMf8HN comprises 182 amino acids (aa), including a signal peptide (SP) of 17aa, and the protein has unique features: it is orthologous to an allergen protein Mal f 8 occurring in Malassezia species, and possesses a high glycine and serine content. RsMf8HN is coded in a genomic location along with its paralogues and a few other effector candidates. The elicitation of plant immunity by RsMf8HN was dependent on HSP90 and SGT1. RsMf8HN was translocated to multiple locations within the host cells: i.e., nuclei, chloroplasts, and plasma membranes. We confirmed the occurrence of in vivo cross-interactions of RsMf8HN with a rice molecule, the heavy metal-associated isoprenylated plant protein OsHIPP28, which is a protein related to the disease susceptibility factor Pi21. In summary, our results suggest that RsMf8HN is a potential effector that enables necrotrophic phytopathogens to interfere with host plant immunity.


Assuntos
Oryza , Oryza/microbiologia , Doenças das Plantas/microbiologia , Rhizoctonia/genética , Plantas , Imunidade Vegetal/genética
13.
Plant Dis ; 107(3): 926-928, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36265148

RESUMO

The basidiomycetous fungus Rhizoctonia solani Kühn (teleomorph Thanatephorus cucumeris [Frank] Donk) is a fungal pathogen that causes various diseases on economically important crops, such as foxtail millet, maize, and rice. Using the PacBio Sequel platform, we assembled a draft genome of an R. solani strain AG4-JY that was isolated from foxtail millet with sheath blight at the stem. The genome was approximately 43.43 Mb on 53 scaffolds, with a scaffold N50 length of 2.10 Mb. In all, 10,545 genes and 179 noncoding RNAs were predicted, and 10,488 genes had at least one database annotation. In addition, the proteins encoded by 709 genes were predicted as secretory proteins. The AG4-JY genome sequence provides a valuable resource for understanding the interactions between R. solani and foxtail millet and controls sheath blight in the world.


Assuntos
Setaria (Planta) , Setaria (Planta)/genética , Rhizoctonia/genética
14.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36361711

RESUMO

Rhizoctonia solani is one of the important pathogenic fungi causing several serious crop diseases, such as maize and rice sheath blight. Current methods used to control the disease mainly depend on spraying fungicides because there is no immunity or high resistance available in crops. Spraying double-strand RNA (dsRNA) for induced-gene silencing (SIGS) is a new potentially sustainable and environmentally friendly tool to control plant diseases. Here, we found that fluorescein-labelled EGFP-dsRNA could be absorbed by R. solani in co-incubation. Furthermore, three dsRNAs, each targeting one of pathogenicity-related genes, RsPG1, RsCATA, and RsCRZ1, significantly downregulated the transcript levels of the target genes after co-incubation, leading to a significant reduction in the pathogenicity of the fungus. Only the spray of RsCRZ1 dsRNA, but not RsPG1 or RsCATA dsRNA, affected fungal sclerotium formation. dsRNA stability on leaf surfaces and its efficiency in entering leaf cells were significantly improved when dsRNAs were loaded on layered double hydroxide (LDH) nanosheets. Notably, the RsCRZ1-dsRNA-LDH approach showed stronger and more lasting effects than using RsCRZ1-dsRNA alone in controlling pathogen development. Together, this study provides a new potential method to control crop diseases caused by R. solani.


Assuntos
Oryza , Rhizoctonia , Rhizoctonia/genética , Doenças das Plantas/genética , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , RNA de Cadeia Dupla/genética , Oryza/genética
15.
Plant Physiol Biochem ; 193: 78-89, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36343463

RESUMO

Banded leaf and sheath blight (BLSB) is a devasting disease caused by the necrotrophic fungus Rhizoctonia solani that affects maize (Zea mays L.) fields worldwide, especially in China and Southeast Asia. Understanding how maize plants respond to R. solani infection is a key step towards controlling the spread of this fungal pathogen. In this study, we determined the transcriptome of maize plants infected by a low-virulence strain (LVS) and a high-virulence strain (HVS) of R. solani for 3 and 5 days by transcriptome deep-sequencing (RNA-seq). We identified 3,015 (for LVS infection) and 1,628 (for HVS infection) differentially expressed genes (DEGs). We confirmed the expression profiles of 10 randomly selected DEGs by quantitative reverse transcription PCR. We also performed a Gene Ontology (GO) enrichment analysis to establish which biological processes are associated with these DEGs, which revealed the enrichment of defense-related GO terms in LVS- and HVS-regulated genes. We selected 388 DEGs upregulated upon fungal infection as possible candidate genes. Among them, the overexpression of ZmNAC41 (encoding NAC transcription factor 41) or ZmBAK1 (encoding BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1) in rice enhanced resistance to R. solani. In addition, overexpressing ZmBAK1 in rice also increased plant height, plant weight, thousand-grain weight, and grain length. The identification of 388 potential key maize genes related to resistance to R. solani provides significant insights into improving BLSB resistance.


Assuntos
Oryza , Zea mays , Zea mays/genética , Zea mays/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Rhizoctonia/genética , Oryza/genética , Perfilação da Expressão Gênica , Transcriptoma/genética
16.
Arch Virol ; 167(12): 2821-2825, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36261748

RESUMO

The nucleotide sequence of a viral double-stranded RNA (dsRNA) from Rhizoctonia solani AG-4 HGIII strain XMC-IF (designated as "Rhizoctonia solani mitovirus 106", RsMV-106) was determined. The complete sequence was 2794 bp in length with a 57.50% A + U content and contained a large open reading frame (ORF) when the fungal mitochondrial genetic code was used. The ORF potentially encodes a 95.76-kDa protein containing a conserved domain of an RNA-dependent RNA polymerase (RdRp). BLASTp analysis revealed that the RdRp domain of RsMV-106 shared 47.52-73.24% sequence identity with those of viruses of the genus Duamitovirus and was most similar (73.24% identity) to that of Alternaria alternata mitovirus 1 (AaMV1). Phylogenetic analysis showed that RsMV-106 is a novel member of the genus Duamitovirus, family Mitoviridae. This is the first report of the full genome sequence of a mitovirus associated with R. solani AG-4 HGIII.


Assuntos
Micovírus , Vírus de RNA , Filogenia , Genoma Viral , Vírus de RNA/genética , Rhizoctonia/genética , Fases de Leitura Aberta , RNA de Cadeia Dupla , RNA Viral/genética , Micovírus/genética
17.
Mol Plant Microbe Interact ; 35(9): 803-813, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36102883

RESUMO

Rhizoctonia cerealis is a soilborne fungus that can cause sharp eyespot in wheat, resulting in massive yield losses found in many countries. Due to the lack of resistant cultivars, fungicides have been widely used to control this pathogen. However, chemical control is not environmentally friendly and is costly. Meanwhile, the lack of genetic transformation tools has hindered the functional characterization of virulence genes. In this study, we attempted to characterize the function of virulence genes by two transient methods, host-induced gene silencing (HIGS) and spray-induced gene silencing (SIGS), which use RNA interference to suppress the pathogenic development. We identified ten secretory orphan genes from the genome. After silencing these ten genes, only the RcOSP1 knocked-down plant significantly inhibited the growth of R. cerealis. We then described RcOSP1 as an effector that could impair wheat biological processes and suppress pathogen-associated molecular pattern-triggered immunity in the infection process. These findings confirm that HIGS and SIGS can be practical tools for researching R. cerealis virulence genes. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Fungicidas Industriais , Triticum , Basidiomycota , Inativação Gênica , Moléculas com Motivos Associados a Patógenos , Doenças das Plantas/microbiologia , Rhizoctonia/genética , Triticum/microbiologia
19.
BMC Genomics ; 23(1): 606, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986248

RESUMO

BACKGROUND: Rice sheath blight, which is caused by Rhizoctonia solani, is the most destructive disease affecting rice production, but the resistance mechanism to this pathogen has not been fully elucidated. RESULTS: In this study, we selected two rice cultivars based on their resistance to the pathogen and analyzed and compared the transcriptomic profiles of two cultivars, the moderately resistant variety Gangyuan8 and the highly susceptible variety Yanfeng47, at different time points after inoculation. The comparative transcriptome profiling showed that the expression of related genes gradually increased after pathogen inoculation. The number of differentially expressed genes (DEGs) in Yanfeng47 was higher than that in Gangyuan8, and this result revealed that Yanfeng47 was more susceptible to fungal attack. At the early stage (24 and 48 h), the accumulation of resistance genes and a resistance metabolism occurred earlier in Ganguan8 than in Yanfeng47, and the resistance enrichment entries were more abundant in Ganguan8 than in Yanfeng47. CONCLUSIONS: Based on the GO and KEGG enrichment analyses at five infection stages, we concluded that phenylalanine metabolism and the jasmonic acid pathway play a crucial role in the resistance of rice to sheath blight. Through a comparative transcriptome analysis, we preliminarily analyzed the molecular mechanism responsible for resistance to sheath blight in rice, and the results lay the foundation for the development of gene mining and functional research on rice resistance to sheath blight.


Assuntos
Oryza , Resistência à Doença/genética , Perfilação da Expressão Gênica , Oryza/genética , Oryza/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Rhizoctonia/genética , Transcriptoma
20.
Plant Dis ; 106(12): 3127-3132, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35536211

RESUMO

A survey of the relative incidence of anastomosis groups (AGs) of Rhizoctonia spp. associated with potato disease was conducted in Idaho, the leading potato producing state in the U.S.A. In total, 169 isolates of Rhizoctonia solani and seven binucleate Rhizoctonia (BNR) isolates were recovered from diseased potato plants. The AG of each isolate was determined through real-time PCR assays for AG 3-PT and phylogenetic analysis of the internal transcribed spacer region of ribosomal DNA. AG 3-PT was the predominant AG, accounting for 85% of isolates recovered, followed by AG 2-1 (5.7%) and AG 4 HG-II (4.5%). Two different subsets of AG 2-1 isolates were recovered (subset 2 and 3). Three isolates each of AG A and AG K were recovered, as well as one isolate each of AG 5 and AG W. An experiment carried out under greenhouse conditions with representative isolates of the different AGs recovered from Idaho potatoes showed differences in aggressiveness between AGs to potato stems, with AG 3-PT being the most aggressive followed by an isolate of AG 2-1 (subset 3). The three BNR isolates representative of AG A, AG K, and AG W appeared to be less aggressive to potato stems than the R. solani isolates except for the AG 2-1 (subset 2) isolate. This is the first comprehensive study of the relative incidences of Rhizoctonia species associated with Idaho potatoes and the first study to report the presence of BNR AG W outside of China.


Assuntos
Rhizoctonia , Solanum tuberosum , Rhizoctonia/genética , Filogenia , Idaho , Doenças das Plantas , Anastomose Cirúrgica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...